
State Knowledge Representation
in the Mission Data System1,2

Daniel Dvorak, Robert Rasmussen, Thomas Starbird

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109-8099

818-393-1986
{daniel.dvorak, robert.rasmussen, thomas.starbird}@jpl.nasa.gov

1 0-7803-7231-X/01/$10.00/© 2002 IEEE
2 IEEEAC paper #040, Updated Dec 13, 2001

Abstract—The possible states of a system, be it a spacecraft,
rover or ground station, are what system engineers identify
and specify, what software engineers design for, and what
operators monitor and control. Many activities inside
mission software are directly concerned with state, whether
planning it, estimating it, controlling it, reporting it or
simulating it. The cause of several mission failures can be
traced to inadequate or inconsistent representations of state.
Consequently, the concept of ‘state’ and its representation
occupy a prominent role in mission software architecture.
The Mission Data System (MDS), presently under
development by NASA to provide multi-mission flight and
ground software for the next generation of deep space
systems, addresses this fundamental need. This paper
describes the MDS approach to state knowledge
representation, covering state variables, state functions,
state estimates and state constraints, emphasizing design
patterns that reduce sources of human error.

 TABLE OF CONTENTS

 1. INTRODUCTION
 2. THE MISSION DATA SYSTEM PROJECT

3. THE MDS VISION
4. STATE ARCHITECTURE
5. MOTIVATIONS
6. STATE KNOWLEDGE OVERVIEW
7. STATE VALUE
8. TIMELINE & STATE FUNCTION
9. STATE VARIABLE
10. RELATED WORK
11. SUMMARY

 1. INTRODUCTION
Mistakes and design errors are a natural part of engineering
efforts, including software engineering for space missions.
Fortunately, most serious errors are caught before
deployment through a series of quality assurance gates that
include reviews and testing. Some bugs still slip through but

their effects are usually minor and manageable. Once in a
while, though, an error goes through undetected until it
causes a mission-ending failure. In such a case, a team of
senior engineers and managers conduct a post mortem
analysis to identify the most probable root cause(s) and
examine how such an error slipped through various quality
assurance gates.

Rather than placing blame on back-end practices that
allowed an error to go undetected, it’s just as important to
look at front-end practices that allow such errors to be born.
In software architecture and design there are many different
crosscutting concerns that must be properly addressed to
achieve a robust system. These concerns include design
patterns, error-checking strategies, synchronization policies,
resource sharing, distribution, performance and others [1].
This paper focuses on one very fundamental crosscutting
concern—representation of state knowledge—because
errors in this area have been implicated in more than one
post mortem analysis [2].

Briefly, state knowledge concerns the representation of
quantities such as camera temperature, switch position,
gimbal angle, sensor health, and vehicle position. In
designing software for holding such information, a natural
tendency is to declare simple variables that use a
programming language’s built-in data types. As this paper
will describe, this and other seemingly innocent decisions
introduce dangers that can occasionally lead to a mission-
ending failure. Consequently, the Mission Data System
(MDS) project elevates state knowledge representation to an
architectural concern whose design is shaped by two main
objectives: (1) a more faithful reflection in software of
‘state’ in the physical world, and (2) a reduction in sources
of human error in dealing with state information.

2. THE MISSION DATA SYSTEM PROJECT
In order to use software-engineering resources more
effectively and to sustain a quickened pace of missions,
while supporting the steady advances required by new

missions, JPL initiated a project in April 1998 to define and
develop an advanced multi-mission architecture for an end-
to-end information system for deep-space missions. The
system, named “Mission Data System” (MDS), addresses
several institutional objectives: earlier collaboration of
mission, system and software design; simpler, lower cost
design, test, and operation; customer-controlled complexity;
and evolution to in situ exploration and other autonomous
applications. JPL’s Inter-Planetary Network and
Information Systems Directorate manages the MDS project.

3. THE MDS VISION
Software development for space missions is obviously part
of a much larger endeavor, but software plays a central and
increasingly important system role that must be reconciled
with the overall systems engineering approach adopted by a
project.

Software and systems engineering are highly interdependent
for two reasons. First, software needs systems engineering
products. It must know how things work. It needs to
understand interfaces. And it has to honor the system
engineer’s intentions. Second, software is essential to
systems engineering. It largely determines the behavior and
performance of a system. It manages the capabilities and
resources of a system. And it presents one’s operational
view of a system.

To put it in another way, both systems engineering and
software deal in the more abstract aspects of a system.
These are issues that apply from the earliest conception of a

mission until the last day of flight operation. They apply
across all constituents of a project and to all elements of the
environment affecting the system. Therefore, it is essential
that systems and software share a common approach to
defining, describing, developing, understanding, testing,
operating, and visualizing what systems do. This is the
fundamental vision and philosophy behind the MDS design:
that software is part of and contributes substantially to a
new systems engineering approach that seamlessly spans the
entire project breadth and life cycle.

It is in this context that state knowledge representation is
treated as both a systems engineering concern and a
software engineering concern.

4. MOTIVATIONS
To motivate the MDS design for state knowledge
representation, it’s instructive to look at a couple code
examples that illustrate problems in conventional software.
In these examples the point is not that conventional code
can’t be made to work, for clearly it can, as evidenced by
many successful missions. Rather, the point is that the code
is vulnerable to certain kinds of errors that can be greatly
reduced by providing more structure, encouraging a more
disciplined approach.

The first example, shown in Figure 1, contains code to take
some action when a pressure becomes too high. This code
illustrates a common problem: lack of explicit
representation of the state being estimated and controlled. A
pressure is being monitored and controlled, but nowhere in

get pressure sensor data
if data is not credible
then

if persistence count is too high
then

set sensor failure indication
else

increment persistence count
else

if data is below a threshold
then

take action
reset persistence count

// State Control
if pressure is known and too high
then

take action

Conventional State Based
Get and publish pressure sensor data

// State Determination
if subscribed sensor data is credible
then

decrease suspicion of sensor health
else

increase suspicion of sensor health

if sensor health is good enough
then

convert subscribed sensor data
set pressure to converted data

else if sensor health is bad enough
then

set pressure to unknown

Figure 1. This figure compares two approaches to implementing a control system that performs an action when
a pressure is too high. The conventional approach, though shorter, lacks an explicit representation of the states
being estimated (sensor health and pressure) and the state being controlled (pressure). The state-based approach
is easier to validate because it converts evidence to states and separates state determination from state control.

the code is there a state variable representing pressure in
Pascals (or any other suitable unit). Instead, a sensor’s raw
measurement in ‘data number’ form is used, provided that
the data number passes some credibility test, and action is
taken if the number is below a threshold. Why below?
Because this sensor produces lower numbers for higher
pressures. Other pitfalls exist: sensor data must be
reinterpreted on the ground; ground must reset the failure
indicator; and the action threshold is likely to be wrong if
the sensor is recalibrated. In contrast, a state-based approach
explicitly represents pressure in a state variable and includes
‘unknown’ as a possible value. It also treats sensor health as
a separate state, as indeed it is. Finally, it keeps state
determination logic separated from control logic, making
the code easier to understand and reuse.

The second example, shown in Figure 2, contains code to
estimate and control camera temperature. The simple
representation of temperature state in a floating-point
variable is a common approach, with direct unregulated
access by all clients. This approach holds several
shortcomings and dangers: (1) units are not explicitly
represented, so we can’t tell if the designer intended Kelvin
or Celsius or Fahrenheit; (2) such variables are often
declared as global, later requiring addition of some form of
thread-safe access; (3) there is no representation of
uncertainty, so a controller may be unknowingly making
control decisions using highly uncertain information; (4)
there is no associated timestamp indicating how long ago
the variable was updated; (5) there is no provision for
extrapolation in time, except for the de facto notion of
constant-until-updated, which is often wrong; (6) such
variables’ values are often meaningful only under certain
circumstances, which users must deduce from context; (7)
predictions of future values and archives of past values must
be handled elsewhere; (8) there is no general discipline to
avoid “delta” representations (e.g., delta-V), which must be
used with caution and which often create issues with when
and how to reset their values; (9) telemetry and its controls
must be provided elsewhere; (10) check-pointing and reboot

initialization from persistent storage must be provided; and
(11) a naming mechanism must be provided for supporting
operational queries.

All of these shortcomings and dangers beg for uniform
mechanisms for all state variables. Without an architecture
for state knowledge representation, two undesirable things
can happen. First, and most importantly, inadequate
representations will appear and will make control logic and
estimation logic error prone and hard to understand.
Second, different subsystem teams will create their own
solutions for the needed capabilities, leading to the all-too-
common difficulties of subsystem integration.

5. STATE ARCHITECTURE
MDS is founded upon a state-based architecture, where
state is a representation of the momentary condition of an
evolving system and models describe how state evolves.
Together, state and models supply what is needed to operate
a system, predict future state, control toward a desired state,
and assess performance (see Figure 3).

System states include device operating modes, device
health, resource levels, attitude and trajectory, temperatures,
pressures, etc, as well as environmental states such as the
motions of celestial bodies and solar flux. Some aspects of
system state are best described as functions of other states;
e.g., pointing can be derived from attitude and trajectory.

The totality of state representations, largely organized
hierarchically within control systems, should provide a

...
// camera temperature state var
double cam_temp;
...
// update temperature value
cam_temp = function1();
...
// use temperature value
function2(cam_temp);
...

...
// camera temperature state var
double cam_temp;
...
// update temperature value
cam_temp = function1();
...
// use temperature value
function2(cam_temp);
...

Figure 2. The use of a built-in primitive data type
is a common approach for state variables, but it
lacks representation of units, uncertainty and age,
and lacks mechanisms for extrapolation in time,
telemetry, naming and check-pointing.

Estimation

Estimation

StateStateStateStateMeasurementsMeasurements

Fault Detection

Fault Detection

Simulation

Simulation

Events
Events

Pa
ra

m
et

er
s

Pa
ra

m
et

er
s

Go
al

s
Go

al
s

Visualization
Visualization

Planning
Planning

Archiving

Archiving

SequencingSequencing

Telemetry

Telemetry

Figure 3. State is a representation of the momentary
condition of an evolving system. System state is the
architectural centerpiece for information processing
because many activities are involved with state.

complete representation of the total system (“complete” in
the sense of providing adequate knowledge of state for all
control purposes). While there may be elements of a project
outside the MDS purview, the external elements are
described at least by their visible behavior. In all cases, state
is accessible in a uniform way through state variables, as
opposed to a program’s global and local variables.

State evolution is described on state timelines, which are a
complete record of a system’s history (“complete” to the
extent that the state representations are adequate, and
subject to storage limitations). State timelines capture
current and past estimates, future predictions and plans, and
past experience. State timelines provide the fundamental
coordinating mechanism since they describe both
knowledge and intent. This information, together with
models of state behavior, provides everything needed to
predict and plan, and it is available in an internally
consistent form, via state variables.

State timelines are also the objects of a uniform mechanism
of information exchange between Flight and Ground,
largely supplanting conventional engineering data traffic in
both directions. For instance, telemetry can be accomplished
by relaying state histories to the ground, and
communication schedules can be relayed as state histories to
the spacecraft. Timelines are relatively compact
representation of state history, because states evolve only in
particular and generally predictable ways. That is, they can
be modeled. Therefore, timelines can be transported much
more compactly than conventional time-sampled data.

6. STATE KNOWLEDGE OVERVIEW
All of these needs have shaped the architecture of state
knowledge representation in MDS. The next three sections
will describe that architecture in terms of three simple
concepts: state values, state functions, and state variables.
The concepts are illustrated with concrete examples of
classes described in the Unified Modeling Language (UML)
[3].

7. STATE VALUE
Timestamp

A “state value” is the value of a state variable at an instant
in time. A state value contains a timestamp and a value. The
timestamp is represented in a uniform way using a
framework class RTEpoch (run-time epoch). Timestamps
(objects of type RTEpoch) have value semantics in that they
can appear in equations of time and can be compared to
other timestamps. “Run-time” refers to the fact that a
timestamp’s time frame is part of the object and is used in
time calculations and comparisons. Time frames include
International Atomic Time (TAI), Ephemeris Time (ET),
Coordinated Universal Time (UTC) and others.

Value and Uncertainty

In deployments other than simulation, where state
knowledge is always uncertain, a state value is termed an
estimate. The “value” part of an estimate has no standard
form since there are many ways to represent state
knowledge, including its uncertainty. In an example of
camera temperature estimates (see Figure 4) detailed
temperature state is represented as a normal distribution in
degrees Kelvin (the base unit for temperature in SI), and a
compressed temperature state is represented as a uniform
distribution in degrees Kelvin. These are just two of many
possible representations. Another possible representation is
the qualitative values ‘cold’, ‘nominal’ and ‘hot’ paired
with qualitative certainties such as ‘possibly’, ‘probably’
and ‘certainly’. The choice here, as in other variation points,
should be driven by need; choose a representation that is
adequate for the task without introducing unnecessary
complexity.

In designing a value representation it’s helpful to think of
values as objects that can answer questions about
themselves, particularly questions that a controller might
ask, rather than as publicly visible data attributes. For
example, regardless of the particular representation chosen
for camera temperature, a camera temperature controller
will need to make decisions about turning a heater on or off,
so it will need to ask questions of the form “is the

Figure 4. A state value is a time-stamped object that represents the value of a state variable at an instant of time.
State values in deployments other than simulation deployments are called “estimates” because they represent
uncertainty in some form. The three leaf classes above describe three kinds of state values for a hypothetical
temperature state variable, reflecting different levels of detail that may exist in different parts of its state timeline.

StateValueBase
- timestamp : RTEpoch

UnknownStateValue
- reasonCode : enum

DetailedTemperatureState
- mean : Si::Temperature
- stdDev : Si::Temperature

CompressedTemperatureState
- lowerBound : Si::Temperature
- upperBound : Si::Temperature

temperature within range r with certainty ≥ c?” and “is the
temperature below value v with certainty ≥ c?” Neither
question dictates a particular internal representation.

Unknown Estimate

The most extreme form of uncertainty in a state estimate is
“unknown”. This value can arise in an estimate for several
reasons: complete lack of evidence (such as due to sensor
failure), deeply conflicting evidence, query at a time in
distant past or future, query during system startup, and
query for a time in the past after that portion of history has
been deleted. As such, MDS requires that the state value
design for every state variable include a way to represent
“unknown”.

One possible way to represent ‘unknown’ is to include a
flag in an otherwise ordinary estimate class. However, this
approach is vulnerable to a simple programming error
where some code fails to check the flag, and therefore uses
the estimate as a known quantity. Another way to represent
‘unknown’ is through a reserved value that should never
occur in normal operation, such as a variance of infinity.
Again, this approach is vulnerable to programming error
where the code fails to check for the reserved value and
then blindly uses the estimate in the ordinary way. To avoid
these errors MDS requires that ‘unknown’ be represented
using a distinct data type, ensuring that client code cannot
accidentally treat an unknown estimate as a known estimate.

Unit Safety

Many states in the physical world are described as scalars or
composites of scalars. A scalar is a quantity such as mass,
length, time or temperature, completely specified by a
number on an appropriate scale. Unfortunately, mainstream
programming languages offer no built-in support for
scalars, so programmers typically use “naked” numeric
types such as ‘float’ and ‘double’. The problem with this
approach is that there is no protection against three kinds of
errors: interface errors (e.g. force passed to an interface
where mass was expected, or voltage and current arguments
transposed in an interface), scale errors (e.g. length given in
feet where meters was expected, or length given in
kilometers where meters was expected), and expression
errors (e.g. a formula that adds velocity and acceleration, or
a conditional that compares power level to energy level).

Through suitable class design it is possible to protect
against such errors with detection at compile time
(preferred) or run time. By taking advantage of templates as
specified in the international standard for C++ [5], it is
possible to support scalars such that all errors are detected at
compile time. Such a package for supporting the SI system
of units (Le Système International d’Unités) is available
from the Fermilab Physics Class Library Task Force [6].
Interestingly, good optimizing compilers can eliminate all
runtime overhead associated with this design such that unit-
safe expressions can be evaluated with the same

performance as unsafe expressions that use built-in numeric
data types.

Ideally, unit safety should be practiced in all software, but
in reality there is a lot of legacy software (including math
packages) that is widely used and well tested, though unsafe
in the sense of using ‘naked’ numeric data types. A
pragmatic approach in such cases is to protect critical
interfaces—particularly subsystem interfaces where
different teams work on different sides of the interface—
and still capitalize on the internal legacy code.

Similar arguments can be made for coordinate frame safety;
units are just one-dimensional coordinate frames and
physical type rolled into one concept. Frame-tagged vectors
(and other quantities) are in design.

Simulation States

State values that appear inside simulators differ from state
estimates that appear inside flight/ground deployments in
one aspect: they contain no uncertainty. Physical quantities
in a simulated world are true, just as they are in the physical
world. Aside from this difference, the same state-based
architecture applies equally to flight, ground, and simulation
deployments in MDS. This commonality contributes to
system verification in a significant way because it facilitates
direct comparison of simulated state and estimated state.

8. TIMELINE & STATE FUNCTION
State knowledge is represented on timelines that span past,
present and future (Figure 5). A timeline expresses two
aspects of state knowledge: knowledge of what has been
estimated from observations and models, and knowledge of
what has been planned from operational goals and models.

Estimated States

As a matter of architectural principle, MDS specifies that
estimated states be defined for all instants of time, from the
beginning of a timeline (termed “distant past”) to its end
(termed “distant future”). Naturally, for some state
variables, there will be regions on the timeline where
estimated states are unknown, such as camera temperature a
year before mission start. That’s OK since ‘unknown’ is
always a possible state estimate, as described earlier.

Estimated states on a timeline are represented through a
series of “state functions” that, collectively, cover all time
continuously from distant past to distant future. The term
“state function” indicates that these are functions of time
that can return a state estimate given a time. There are many
ways of expressing a function of time, and MDS does not
limit a user’s choices. For example, constant functions,
linear functions, and higher-order polynomial functions are
all candidates. Likewise, discontinuous functions that
describe abrupt state transitions (such as closing a switch)
are candidates. In all cases the choice of function should be

driven by need, as influenced by system dynamics and
estimation rate.

The principle of a continuously defined timeline may seem
unusual in the context of conventional practice where
histories consist of time-stamped samples, but there are
three important motivations for it. First, MDS strives to
reflect the underlying physics. States in the physical world
are defined at all instants, and the role of state knowledge
representation in MDS is to represent that reality. Second,
cyclic real-time applications become less sensitive to jitter
and cycle-slip since they can obtain estimates for
synchronous instants in time, as opposed to whenever the
data happened to be sampled. For example, the Cassini
attitude and articulation control system (AACS) uses
interpolation functions for exactly this purpose [13]. Third,
functions of time can be compressed in a variety of
memory-saving ways while preserving much of the
information. For example, a series of piecewise linear
functions of time can be replaced by a curve fit to a
polynomial function.

Time Derivatives

In physics the concept of “state” refers to physical
quantities whose values, collectively, provide an
instantaneous description of a system. Position and velocity
are considered separate states, but not all time derivatives
are states in the physics sense.

MDS, in contrast, keeps all time derivatives of x in the state
variable for x. This difference is a natural consequence of
the fact that state knowledge is represented in functions of
time (state functions). A state variable for spacecraft
position implicitly contains knowledge about spacecraft
velocity since its state functions contain position versus
time. If there were separate state variables for position and
velocity then not only would there be redundant information
but also their respective values would have to be kept

consistent at all times. As a matter of simplicity and safety,
then, MDS keeps all time derivatives of a quantity together
in the same state variable.

Planned States

The MDS architecture is designed for goal-driven
operation. By definition, an MDS goal is a constraint on the
value of a state variable over a time interval. A constraint
defines a set of state histories that satisfy a goal.
Accordingly, a state timeline contains a series of goals that
represent the current plan. The plan part of a timeline, then,
differs from the estimated part in two ways. First, the value
of a plan at an instant of time is a set of states rather than a
single state, reflecting the fact that any state in that set is
compatible with the goal. Second, a goal’s time interval is
bounded by two “time points” whereas, on the estimated
part of the timeline, state functions are bounded by two
absolute times. A time point is different in that it represents
a time range resulting from temporal constraints among
goals.

This paper focuses primarily on the estimated part of a
timeline. For a description of the interfaces and operations
on the plan part of a timeline, see [9].

9. STATE VARIABLE
The role of state variables is to provide access to state
knowledge. State variables are like “Grand Central Station”
in the MDS architecture since every component that needs
to obtain or update state information goes to the appropriate
state variables. State variables serve not only real-time
clients such as estimators and controllers but also
deliberative clients for goal elaboration and scheduling.

Don’t
Know

Don’t
CareOFF

ON
OFF

ON
OFF

ON
OFF

ON

Past Future

time

Now

discrete-valued variable

continuous-valued variable

Figure 5. A timeline represents a state variable’s value as a function of time spanning the past, present,
and future. A timeline holds two kinds of state knowledge: estimated states based on interpretation of
observations, and planned states based on operational goals. As shown, the future part of a timeline
contains planned states while the past part contains both planned and estimated states. Estimated state is
represented in a series of state functions and planned state is represented in a series of goals.

Kinds of State Variables

There are three kinds of state variables, as shown in
Figure 6. A “basis state variable” has a local estimator that
updates its state timeline as needed. Such variables are
typically located near sources of evidence and the ability to
interpret that evidence. For example, a planetary lander
having a battery temperature sensor would have a basis state
variable for battery temperature. A “proxy state variable”
provides remote, read-only, time-delayed access to the state
timeline of a corresponding basis state variable. For
example, since battery temperature would be of interest to
earth-based engineers, there would be a proxy state variable
for battery temperature in a ground deployment. The
locations of basis state variable and its proxy can occur in
the opposite order as well. For example, sensor calibration
is often estimated on the ground by humans or ground-
based software and then up-linked. In such a case the
ground deployment would have the basis state variable and
the flight deployment would have the proxy state variable.

The third kind of state variable is a “derived state variable”,
so named because any value that it returns is derived from
two or more other state variables. For example, the total
power consumed by three instruments could be made
available in a derived state variable that has access to the
three individual instrument power state variables.

In addition to ordinary state variables whose values are
implicitly defined with respect to some standard reference,

there is another category of state variable whose values
always represent a relation between two entities. One
example of the latter is spacecraft position relative to
celestial bodies. In a space mission the most ‘interesting’
view of spacecraft position changes, depending on planned
activities. In a mission such as Cassini, with multiple
gravity assists, the view has changed over time among Earth
and Venus and Jupiter and Saturn and the Sun. This
category of state variables that represents relational states is
termed “graph state variables” because state knowledge is
represented in the edges of a graph that are traversed from
one node to another when answering a query about the
value of one node relative to another. For more details, see
Bennett [4].

State Variable Interfaces

State variables in MDS reflect the union of its state-based
architecture and its component-based architecture. The
state-based architecture covers the concepts described
earlier, namely, state estimates, timelines, and state
functions. The component-based architecture covers
software engineering issues such as interfaces, ports,
components, connections, and synchronization [8]. This
section focuses on interface descriptions for state variables.

As the name suggests, an interface represents an agreement
between two parties regarding how they will interact with
each other. In order for two components to interact, they
must do so through a connection between a port on one

Figure 6. The state architecture defines what interfaces—and thus operations—are valid for a state variable, depending
on its type. At the top of the hierarchy a “derived” state variable has no value history of its own but can derive a state
value by combining values from other state variables. A “proxy” state variable has a value history and therefore
supports primitive query operations and policy control of that history, but provides no update operation since a proxy
provides read-only access. A “basis” state variable is locally estimated so it adds a state update interface.

StateVar

ProxyStateVar

BasisStateVar

StateQueryInterface

ConstraintExecutionInterface

StateNotificationInterface

MultiQueryInterface

StateUpdateInterface ConstraintExecutionInterface
(to estimator)

ConstraintExecutionInterface
(to controller)

ValueHistory
PolicyControllerInterface

component and a port on the other component. Both ports
must be defined in terms of the same interface. One
component “provides” the interface while the other
component “requires” it. Very simply, this is the distinction
between the called party (the provider of a service) and the
calling party (the user who requires the service). For
example, a state variable provides a state query interface for
use by other clients, such as controllers, that need to query a
state variable.

A state variable has several interfaces, depending on the
kind of state variable, as shown in Figure 5. Broadly, there
are five kinds of interfaces for state update, state query,
notification upon change, data management control, and
constraint execution. The following subsections describe the
purpose of each interface and the operations that it supports.
Interface declarations are detailed in Figure 7.

State Query Interface—The purpose of the state query
interface is to provide an operation for obtaining a state
value at an instant in time. As such, the ‘getState’ operation
takes a single time argument and returns a smart pointer to a
state value object. The data type of that object can vary
depending on whether the data has been compressed and
whether the value is unknown. This interface currently
defines only a single operation that returns a smart pointer
to a state value object. Such an operation is general, safe,
and efficient for large objects, but involves a fair amount of
overhead for small objects. Other query operations
involving return-by-value may be added to support different
tradeoffs among speed, memory, and safety.

During state variable initialization the state query interface
is locked in such a way that all queries return ‘unknown’
(by returning the UnknownStateValue object shown in
Figure 4). This prevents controllers and other clients from
taking inappropriate actions based on garbage values that
could be present during startup.

State Update Interface—The purpose of the state update
interface is to provide operations for timeline updates:
routine updates as well as startup initialization. This
interface exists for the exclusive use of a single state
estimator / generator, an architectural rule that is enforced
by the component manager. As noted earlier, a state variable
begins life in a locked state, and any queries to the state
query interface are rebuffed with a returned value of
‘unknown’. The first duty of a state estimator / generator
upon startup is to initialize the timeline and then unlock the
state variable. Initialization can include selective recovery
of state from persistent storage (if desired), repairing
erroneous areas of history, and obtaining new evidence
from sensors. The fact that a system reset has occurred is
itself evidence that may influence the updated value of state.

State Notification Interface—The purpose of the state
notification interface is to notify interested listeners when a
state variable’s timeline has been updated. This interface
supports the Observer design pattern for data-driven
reactions [7]. Note that this is an interface that a state
variable requires, rather than one it provides, since this is an
interface that it calls. The trigger for notification depends on
the type of state variable. A basis state variable calls the
‘changed’ operation when its own ‘updateState’ operation
has been called. However, a proxy state variable calls
‘changed’ upon receipt of new data from the data transport
service. Notification always includes the identity of the
notifying state variable plus a vector of changed items in the
timeline.

Policy Control Interface—Internally, a state variable’s
estimated state timeline is managed by a data management
service. This service is managed by policies that specify
when to checkpoint, what to transport, when to compress,
how much to recover upon startup, and other management
functions. The policy control interface exists for the purpose

StateQueryInterface

+ getState (const RTEpoch&): AutoPtr<const StateValueBase>

StateQueryInterface

+ getState (const RTEpoch&): AutoPtr<const StateValueBase>

StateUpdateInterface

+ recoverState (const RTEpoch&, const RTEpoch&): void
+ getStateNL (const RTEpoch&): AutoPtr<const StateValueBase>
+ getStateFunctionNL (const RTEpoch&):

RefCountP<const StateFunctionBase>
+ updateState (const StateFunctionBase&): void
+ unlockState (): void

StateUpdateInterface

+ recoverState (const RTEpoch&, const RTEpoch&): void
+ getStateNL (const RTEpoch&): AutoPtr<const StateValueBase>
+ getStateFunctionNL (const RTEpoch&):

RefCountP<const StateFunctionBase>
+ updateState (const StateFunctionBase&): void
+ unlockState (): void

StateNotificationInterface

+ changed (const RefCountComponentInstance monitoredStateVar,
Dm::Vhis::ValueHistory::ItemVectorRef changedItems) : void

StateNotificationInterface

+ changed (const RefCountComponentInstance monitoredStateVar,
Dm::Vhis::ValueHistory::ItemVectorRef changedItems) : void

PolicyControllerInterface

+ setPolicy (const HistoryPolicy& policy) : void
+ replacePolicy (const HistoryPolicy& policy) : void
+ revokePolicy (const PolicyIDType& policyID) : void
+ getPolicy (const PolicyIDType& policyID) : const HistoryPolicy&

PolicyControllerInterface

+ setPolicy (const HistoryPolicy& policy) : void
+ replacePolicy (const HistoryPolicy& policy) : void
+ revokePolicy (const PolicyIDType& policyID) : void
+ getPolicy (const PolicyIDType& policyID) : const HistoryPolicy&

MultiQueryInterface

+ getStateFunction (const RTEpoch& time) :
RefCountP<const StateFunctionBase>

+ getItemsInRange (const RTEpoch& start, const RTEpoch& stop) :
RefCountP<const RefCountAdapter<const std::vector<ItemRef>>>

MultiQueryInterface

+ getStateFunction (const RTEpoch& time) :
RefCountP<const StateFunctionBase>

+ getItemsInRange (const RTEpoch& start, const RTEpoch& stop) :
RefCountP<const RefCountAdapter<const std::vector<ItemRef>>>

ConstraintExecutionInterface

+ isReadyToStart (RefCountP<const StateConstraint>) : bool
+ startConstraint (RefCountP<const StateConstraint>) : void

ConstraintExecutionInterface

+ isReadyToStart (RefCountP<const StateConstraint>) : bool
+ startConstraint (RefCountP<const StateConstraint>) : void

Figure 7. State variable interface declarations.

of adjusting these data management policies.

Multi Query Interface—Ordinarily a state variable exposes
only its state values to clients, not its state functions. This
deliberately hides the form of its state functions as an
implementation detail that can be changed without affecting
clients. However, there are some situations where a client
needs access to state functions in order to compute a value
that depends on the shape of one or more state functions
(such as to compute the area under a curve). To minimize
unnecessary dependencies upon implementation details, use
of this interface is restricted to special cases and is treated as
an automatic inspection item.

Constraint Execution Interface—In addition to its role as the
access point for state knowledge, state variables also act as
intermediary for clients that need to talk to each other
concerning their mutual interest in a state variable (see
Figure 8). In this respect the component for dispatching
executable goals for state variable x needs to talk to the goal
achievers for x (its controller and/or estimator). The
constraint execution interface makes this possible. The
interface is both provided and required by the state variable;
it is provided so that the goal dispatcher can call it, and it is
required so that the state variable can relay the calls to
associated goal achievers. Note that using the state variable
as an intermediary has the desirable property of decoupling
the estimator, controller, and goal dispatcher that would
otherwise have to know of each other’s existence.

10. RELATED WORK
Software architectures vary significantly in the stature given
to state knowledge versus other architectural elements.
Some architectures that elevate state knowledge to an
important role, though not precisely in the same way as
MDS, include PRS-CL3 [10], Altairis MCS [11], and the

Deep Space One Remote Agent [12].

11. SUMMARY
 “State knowledge” is what you know and how well you
know it. State knowledge encompasses the many states that
a system must know about, such as vehicle position, device
temperature, sensor calibration values, power usage, terrain
topology, and many others. Inadequate or inconsistent state
representations can and have caused mission-ending
failures. Common representational deficiencies include
indirect or hidden representations, multiple private and
potentially inconsistent estimations of the same state, lack
of units of measurement, lack of or hidden expressions of
uncertainty, lack of timestamps, and “algorithm state” as a
substitute for published readable state information.

As a state-based architecture, MDS elevates state
knowledge representation to an architectural concern that
begins with systems engineering in identifying important
states and continues through to software engineering,
verification & validation, and operation. The MDS state
architecture and associated framework software design
support state knowledge representation through four
architectural elements: state variables, timelines and state
functions, state estimates, and state constraints. This
architecture has been shaped by two main objectives: a
closer reflection in software of the physical states that are
being monitored and controlled, and a desire to reduce
sources of human error in using and updating state
information in mission software.

REFERENCES
[1] Xerox Corporation, Aspect-Oriented Programming,
http://www.parc.xerox.com/csl/projects/aop/

[2] Thomas Young (chair), “Mars Program Independent
Assessment Team Summary Report”, March 14, 2000,
http://www.nasa.gov/newsinfo/mpiat_summary.pdf.

[3] Grady Booch, James Rumbaugh, Ivar Jacobsen, “The
Unified Modeling Language User Guide,” 1999, Addison
Wesley Longman, Inc.

[4] Matthew Bennett, “Modeling Relationships Using Graph
State Variables”, 2002 IEEE Aerospace Conference.

[5] International Standard ISO/IEC 14882, Joint Technical
Committee ISO/IEC JTC 1, Information technology,
subcommittee SC 22, Programming languages, their
environments and system software interfaces, Sep. 1, 1998.

[6] Walter E. Brown, “Introduction to the SI Library of Unit-
Based Computation”, International Conference on

3 PRS-CL is a trademark of SRI International.

Figure 8. In addition to its role as access point for
state knowledge, a state variable helps reduce
coupling among other components by acting as an
intermediary for communication among components
that would otherwise need references to each other.

Goal Network
Delivery

State Variable

? ?

Estimator Controller

1: startConstraint

2: startConstraint 3: startConstraint

Computing in High Energy Physics (CHEP ’98), August 31–
September 4, 1998.

[7] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides, “Design Patterns: Elements of Reusable Object-
Oriented Software”, Addison-Wesley, 1995.

[8] Clemens Szuperski, "Component Software: Beyond
Object-Oriented Programming", Addison Wesley, 1999.

[9] Russell Knight, Steve Chien, and Gregg Rabideau.
“Extending the Representational Power of Model-based
Systems using Generalized Timelines.” The 6th
International Symposium on Artificial Intelligence, Robotics
and Automation in Space (i-SAIRAS 2001), June 18-22,
2001, Montreal, Canada.

[10] Karen Myers, “PRS-CL Architecture,”
http://www.ai.sri.com/~prs/prs-arch.html.

[11] Aeroflex Altair Cybernetics Corporation,
http://www.altaira.com/

[12] B. Pell, D. Bernard, S. Chien, E. Gat, N Muscettola, P.
Nayak, M. Wagner, B. Williams, “An Autonomous
Spacecraft Agent Prototype,” Proceedings of the First
Annual Workshop on Intelligent Agents, Marina Del Rey,
CA, 1997.

[13] G. M. Brown, D. Bernard, R. Rasmussen, “Attitude
and Articulation Control for the Cassini Spacecraft: A Fault
Tolerant Overview,” Proceedings of the 14th AIAA/IEEE
Digital Avionics System Conference, November 1995

Daniel Dvorak is a principal
engineer in the Exploration
Systems Autonomy section at the
Jet Propulsion Laboratory,
California Institute of Technology,
where his interests have focused on
state estimation, fault detection and
diagnosis, and verification of
autonomous systems. Prior to 1996
he worked at Bell Laboratories on
the monitoring of telephone switching systems and on the
design and development of R++, a rule-based extension to
C++. Dan holds a BS in electrical engineering from Rose-
Hulman Institute of Technology, an MS in computer
engineering from Stanford University, and a Ph.D. in
computer science from The University of Texas at Austin.

Robert Rasmussen is a principal
engineer in the Information
Technologies and Software Systems
division at the Jet Propulsion
Laboratory, California Institute of
Technology, where he is the
Mission Data System architect. He
holds a BS, MS, and Ph.D. in
Electrical Engineering from Iowa
State University. He has extensive
experience in spacecraft attitude control and computer
systems, test and flight operations, and automation and
autonomy — particularly in the area of spacecraft fault
tolerance. Most recently, he was cognizant engineer for the
Attitude and Articulation Control Subsystem on the Cassini
mission to Saturn.

Thomas Starbird is a principal in
system design in the Mission
Systems Engineering section of the
Jet Propulsion Laboratory (JPL),
California Institute of Technology.
He received a B.A. from Pomona
College and a Ph.D. from the
University of California at
Berkeley, both in Mathematics. He
has participated in software
development and Mission Operations System development
for several space projects at JPL. He led the
implementation of SEQ_GEN, multi-mission software used
for constructing and checking sequences of commands to be
sent to a spacecraft. He is currently leading the
implementation of the Planning & Execution portions of the
Mission Data System.

